Constructs the Manipulator object of a 3- P R R manipulator.
Parallel_3PRR := proc( morespec ::seq(name=algebraic), precision := 4 )
Constructs the Manipulator object of a planar 3-R P R manipulator.
Parallel_3RPR := proc( { d1 ::algebraic := 17.04, d2 ::algebraic := 16.54, d3 ::algebraic := 20.84, beta ::algebraic := arccos ((d2^2-d3^2-d1^2)/(-2*d3*d1)), A2x ::algebraic := 15.91, A3x ::algebraic := 0, A3y ::algebraic := 10, precision ::integer := 4 } , morespec ::seq(name=algebraic), moreranges ::seq(name=range) )
Constructs the Manipulator object of a planar 3-R P R manipulator.
Parallel_3RPR_full := proc( morespec ::seq(name=algebraic), precision := 4 )
Constructs the Manipulator object of a P R R P manipulator.
Parallel_PRRP := proc( morespec ::seq(name=algebraic), precision := 4 )
Constructs the Manipulator object of a R P R R P manipulator.
Parallel_RPRRP := proc( { e ::constant := 0.7, L4 ::constant := 1, S2min ::constant := 0.5, S2max ::constant := 1.5, S4min ::constant := 0.1, S4max ::constant := 1.1, precision := 4 } , morespec ::seq(name=algebraic) )
Constructs the Manipulator object of a 2-R R manipulator.
Parallel_RR_RRR := proc( morespec ::seq(name=algebraic), precision := 4 )
Constructs the Manipulator object of the 3- P P P S manipulator.
Parallel3PPPS := proc( morespec ::seq(name=algebraic), precision := 4, { quaternions ::truefalse := false, tiltandtorsion ::truefalse := false, normalize ::truefalse := false, ortho ::truefalse := false } )
Constructs the Manipulator object of the 3- P R S manipulator.
Parallel3PRSc:= proc( morespec ::seq(name=algebraic), precision := 4, { quaternions ::truefalse := false } )
Constructs the Manipulator object of the 3- P R S manipulator.
Parallel3PRSd := proc( morespec ::seq(name=algebraic), precision := 4, { quaternions ::truefalse := false, tiltandtorsion ::truefalse := false, ortho ::truefalse := false, normalize ::truefalse := false } )
Computes the implicit equations satisfied by the cuspidal points
ParallelCuspidal := proc ( robot ::Manipulator, { [fast,notest] ::truefalse := false, direct ::truefalse := false, parameters ::list(name) := [] } )
ParallelPRP2PRR := proc( morespec ::seq(name=algebraic), precision := 4 )
Constructs the Manipulator object of the R P R 2-P R R manipulator.
ParallelRPR2PRR := proc( morespec ::seq(name=algebraic), precision := 4 )
Interpolate points linearly.
Path := proc ( L ::list, steps ::integer := 10 )
Plots a system of 2 variables
Plot2D := proc ( sys ::{algebraic, equation(algebraic), list({algebraic,equation(algebraic), algebraic<algebraic}), list(list({algebraic,equation(algebraic), algebraic<algebraic}))}, e1 ::name = range, e2 ::name = range, { points ::truefalse := false, [ notest, draft ] ::truefalse := false } )
Plots a system of 3 variables using maple internal plotting functions.
Plot3D := proc ( sys ::{algebraic, equation(algebraic), list({algebraic,equation(algebraic), algebraic<algebraic}), list(list({algebraic,equation(algebraic), algebraic<algebraic}))}, ineq ::list({polynom, polynom<polynom}) := [], e1 ::name = range := sort ([op(indets([sys,x,y,z],name))])[1] =-5..5, e2 ::name = range := sort ([op(indets([sys,x,y,z],name) minus {lhs(e1)})])[1] =-5..5, e3 ::name = range := sort ([op(indets([sys,x,y,z],name) minus {lhs(e1),lhs(e2)})])[1] =-5..5, { points ::truefalse := false, crossingrefine ::truefalse := false, grid ::integer := 10, border ::constant := 10^(-30), output ::identical(list,display) := ':-display', noverbose ::truefalse := false, verboserate ::integer := -10 } )
Plots a system of 3 variables using glsurf.
Plot3Dglsurf := proc ( sys ::{algebraic, equation(algebraic), list({algebraic,equation(algebraic)}), list(list({algebraic,equation(algebraic)}))}, e1 ::name = range, e2 ::name = range, e3 ::name = range, { points ::truefalse := false, scale ::identical(constrained, unconstrained) := 'unconstrained' } )
Plots a system of 3 variables using surfex (software based on surf).
Plot3Dsurfex := proc ( sys ::{algebraic, equation(algebraic), list({algebraic, equation(algebraic), algebraic<algebraic}), list(list({algebraic,equation(algebraic)}))}, ineq ::list({polynom, polynom<polynom}) := [], e1 ::name = range := sort ([op(indets([sys,x,y,z]))])[1] =-1..1, e2 ::name = range := sort ([op(indets([sys,x,y,z]))])[2] =-1..1, e3 ::name = range := sort ([op(indets([sys,x,y,z]))])[3] =-1..1, { points ::truefalse := false, scale ::identical(constrained, unconstrained) := 'unconstrained' } )
Plot the cells returned CellDecomposition or CellDecompositionPlus
PlotCell2D := proc ( cells ::record, i ::{list(list(integer)),list(integer),integer} := [ $ 1 .. nops(cells:-SamplePoints) ], ranges ::seq(name=range) := NULL, { samplepoints ::truefalse := false, nowall ::truefalse := false, grid ::integer := 10, border ::constant := 0.0000001, color := [], downupcolors ::list := [], points ::list := [], colorpoints ::list := [], noverbose ::truefalse := false, verboserate ::integer := -10 } )
Plot the cells returned CellDecomposition or CellDecompositionPlus
PlotCell3D := proc ( cells ::record, i ::{list(integer),integer} := [ $ 1 .. nops(cells:-SamplePoints) ], ranges ::seq(name=range) := NULL, { nowall ::truefalse := false, grid ::integer := 10, border ::constant := 0.0000001, color := [], noverbose ::truefalse := false, verboserate ::integer := -10 } )
Plots a curve given by implicit equations in 3 variables.
PlotCurve3D := proc ( sys ::{algebraic, equation(algebraic), list({algebraic,equation(algebraic), algebraic<algebraic}), list(list({algebraic,equation(algebraic), algebraic<algebraic}))}, ineq ::list({polynom, polynom<polynom}) := [], e1 ::name = range := sort ([op(indets([sys,x,y,z],name))])[1] =-5..5, e2 ::name = range := sort ([op(indets([sys,x,y,z],name) minus {lhs(e1)})])[1] =-5..5, e3 ::name = range := sort ([op(indets([sys,x,y,z],name) minus {lhs(e1),lhs(e2)})])[1] =-5..5, { grid ::integer := 30, output ::identical(list,display) := ':-display' } )
Plot a planar manipulator
PlotRobot2D := proc ( robot ::Manipulator, spec ::seq(name=constant), k ::{integer,range,list(integer)} := .., { color := [], legendvars := subs (map(s->lhs(s)=NULL,[spec]), [op(robot:-ArticularVariables), op(robot:-PoseVariables), op(robot:-PassiveVariables), 'det(J)']), nolegend ::truefalse := false, noconstraints ::truefalse := false } )
Plot a 3D manipulator
PlotRobot3D := proc ( robot ::Manipulator, spec ::seq(name=constant), k ::{integer,range,list(integer)} := .., { color := [], legendvars := subs (map(s->lhs(s)=NULL,[spec]), [op(robot:-ArticularVariables), op(robot:-PoseVariables), op(robot:-PassiveVariables), 'det(J)']), nolegend ::truefalse := false, noconstraints ::truefalse := false, nolabel ::truefalse := false } )
Plot the border of a manipulator workspace
PlotWorkspace := proc ( robot ::Manipulator, spec ::seq(name=constant), disp ::seq(identical(type1,type2, constraints,infinite)) := ('type1','type2','constraints','infinite'), vars ::{list(name), identical(articular, pose)} := 'articular', ranges ::seq(name=range) := NULL, { notest ::truefalse := false } )
Saturates an ideal by a polynomial.
PolynomialSaturation := proc ( sys ::list(algebraic), p ::algebraic, vars ::list(name) := NULL, char ::integer := 0 )
Project on variables or expressions in a polynomial system.
Projection := proc ( sys ::list(algebraic), vars1 ::list({name,name=algebraic}), vars2 ::list(name) := [op(indets(sys,name) minus {op(vars1)} minus indets(sys,constant))], char ::integer := 0, { output ::identical(list,listlist) := 'list', allvariables ::truefalse := false, keeporder ::truefalse := false, nofactor ::truefalse := false } )
Computes the non properness set of a projection.
PropernessDefect := proc ( sys ::list(algebraic), pars ::list(name), vars ::list(name) := [op(indets(sys, name) minus {op(pars)})], char ::integer := 0 )